Lookback for Learning to Branch

Prateek Gupta*, Elias B. Khalil, Didier Chételat, Maxime Gasse, M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

SIAM Conference on Optimization, June 2nd 2023

The
Alan Turing Institute

Université ! de Montréal

GERAD
GROUPE D'ETUDES ET DE RECHERCHE EN ANALYSE DES DÉCISIONS DECISION-MAKING

To improve the extent to which neural networks can imitate a computationally expensive but accurate heuristic to solve mixed-integer linear programming (MILP) problems.

Outline

Problem formulation

Our solution

Conclusion

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

Mixed-Integer Linear Program (MILP)

```
arg min }\mp@subsup{c}{}{\top}
    x
```

- $\mathrm{c} \in \mathbb{R}^{n}$ the objective coefficients

Mixed-Integer Linear Program (MILP)

$$
\begin{aligned}
\underset{x}{\arg \min } & c^{\top} x \\
\text { subject to } & A x \leq b,
\end{aligned}
$$

- $\mathrm{c} \in \mathbb{R}^{n}$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathrm{b} \in \mathbb{R}^{m}$ the constraint right-hand-sides

Mixed-Integer Linear Program (MILP)

$$
\begin{aligned}
\underset{x}{\arg \min } & \mathrm{c}^{\top} \mathrm{x} \\
\text { subject to } & \mathrm{A} x \leq \mathrm{b}, \\
& \mathrm{I} \leq \mathrm{x} \leq \mathrm{u},
\end{aligned}
$$

- $\mathrm{c} \in \mathbb{R}^{n}$ the objective coefficients
- $\mathrm{A} \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathrm{b} \in \mathbb{R}^{m}$ the constraint right-hand-sides
- $I, u \in \mathbb{R}^{n}$ the lower and upper variable bounds

Mixed-Integer Linear Program (MILP)

$$
\begin{array}{rr}
\underset{x}{\arg \min } & \mathrm{c}^{\top} \mathrm{x} \\
\text { subject to } & \mathrm{A} \\
& \mathrm{I} \leq \mathrm{b} \\
& \mathrm{x} \\
& \leq \mathrm{u}, \\
& \mathrm{x}
\end{array} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
$$

- $\mathrm{c} \in \mathbb{R}^{n}$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathrm{b} \in \mathbb{R}^{m}$ the constraint right-hand-sides
- $I, \mathrm{u} \in \mathbb{R}^{n}$ the lower and upper variable bounds
- $p \leq n$ integer variables

Mixed-Integer Linear Program (MILP)

$$
\begin{array}{rr}
\underset{x}{\arg \min } & \mathrm{c}^{\top} \mathrm{x} \\
\text { subject to } & \mathrm{A} \\
& \mathrm{I} \leq \mathrm{b} \\
& \mathrm{x} \\
& \leq \mathrm{u}, \\
& \mathrm{x}
\end{array} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
$$

- $\mathrm{c} \in \mathbb{R}^{n}$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathrm{b} \in \mathbb{R}^{m}$ the constraint right-hand-sides
- $I, \mathrm{u} \in \mathbb{R}^{n}$ the lower and upper variable bounds
- $p \leq n$ integer variables

NP-hard problem.

Applications

Combinatorial Auctions
Facility location-Allocation
Maximum Indendent Set

Set Covering

and many more ...

Mixed-Integer Linear Program (MILP)

$$
\begin{array}{rr}
\underset{\mathrm{x}}{\arg \min } & \mathrm{c}^{\top} \mathrm{x} \\
\text { subject to } & \mathrm{A} x \leq \mathrm{b}, \\
& \mathrm{I} \leq \mathrm{x} \leq \mathrm{u}, \\
& \mathrm{x} \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
\end{array}
$$

- $c \in \mathbb{R}^{n}$ the objective coefficients
- $\mathrm{A} \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathrm{b} \in \mathbb{R}^{m}$ the constraint right-hand-sides
- $I, u \in \mathbb{R}^{n}$ the lower and upper variable bounds
- $p \leq n$ integer variables

NP-hard problem.

Mixed-Integer Linear Program (MILP)

Image credit: Maxime Gasse

Linear Program (LP)

$$
\begin{array}{rr}
\underset{x}{\arg \min } & \mathrm{c}^{\top} \mathrm{x} \\
\text { subject to } & \mathrm{A} x \leq \mathrm{b} \\
& \mathrm{I} \leq \mathrm{x} \leq \mathrm{u} \\
& x \in \mathbb{R}^{n} .
\end{array}
$$

- $\mathrm{c} \in \mathbb{R}^{n}$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathrm{b} \in \mathbb{R}^{m}$ the constraint right-hand-sides
- $\mathrm{I}, \mathrm{u} \in \mathbb{R}^{n}$ the lower and upper variable bounds

Linear Program (LP)

$$
\begin{array}{rr}
\underset{\mathrm{x}}{\arg \min } & \mathrm{c}^{\top} \mathrm{x} \\
\text { subject to } & \mathrm{Ax} \leq \mathrm{b} \\
& \mathrm{I} \leq \mathrm{x} \leq \mathrm{u} \\
& x \in \mathbb{R}^{n} .
\end{array}
$$

- $\mathrm{c} \in \mathbb{R}^{n}$ the objective coefficients
- $\mathrm{A} \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathrm{b} \in \mathbb{R}^{m}$ the constraint right-hand-sides
- $\mathrm{I}, \mathrm{u} \in \mathbb{R}^{n}$ the lower and upper variable bounds
- Polynomially solvable

Linear Program (LP)

$$
\begin{array}{rr}
\underset{x}{\arg \min } & \mathrm{c}^{\top} \mathrm{x} \\
\text { subject to } & \mathrm{A} x \leq \mathrm{b}, \\
& \mathrm{I} \leq \mathrm{x} \leq \mathrm{u}, \\
& \mathrm{x} \in \mathbb{R}^{n} .
\end{array}
$$

- $\mathrm{c} \in \mathbb{R}^{n}$ the objective coefficients
- $\mathrm{A} \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathrm{b} \in \mathbb{R}^{m}$ the constraint right-hand-sides
- $I, u \in \mathbb{R}^{n}$ the lower and upper variable bounds
- Polynomially solvable
- Yields lower bounds to the original MILP

LP Relaxation of a MILP

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

Branch-and-Bound (B\&B)

B\&B (Land et al., 1960) is the widely used framework to solve MILPs. It consists of two steps

Each node in branch-and-bound is a new MIP

Image source: https://www.gurobi.com/resource/mip-basics/

Branch-and-Bound (B\&B)

B\&B (Land et al., 1960) is the widely used framework to solve MILPs. It consists of two steps

- Branching - Select variable to split the problem into two

Each node in branch-and-bound is a new MIP

Image source: https://www.gurobi.com/resource/mip-basics/

Branch-and-Bound (B\&B)

B\&B (Land et al., 1960) is the widely used framework to solve MILPs.
It consists of two steps

- Branching - Select variable to split the problem into two
- Bounding - Solve the LP relaxation of resulting problem to obtain optimization guarantees on the solution

Each node in branch-and-bound is a new MIP

Image source: https://www.gurobi.com/resource/mip-basics/

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e. $\exists i \leq p \mid x_{i}^{\star} \notin \mathbb{Z}$

$$
x_{i} \leq\left\lfloor x_{i}^{\star}\right\rfloor \quad \vee \quad x_{i} \geq\left\lceil x_{i}^{\star}\right\rceil .
$$

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e. $\exists i \leq p \mid x_{i}^{\star} \notin \mathbb{Z}$

$$
x_{i} \leq\left\lfloor x_{i}^{\star}\right\rfloor \quad \vee \quad x_{i} \geq\left\lceil x_{i}^{\star}\right\rceil .
$$

Lower bound (L): minimal among leaf nodes. Upper bound (U): minimal among leaf nodes with integral solution.

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e. $\exists i \leq p \mid x_{i}^{\star} \notin \mathbb{Z}$

$$
x_{i} \leq\left\lfloor x_{i}^{\star}\right\rfloor \quad \vee \quad x_{i} \geq\left\lceil x_{i}^{\star}\right\rceil .
$$

Lower bound (L): minimal among leaf nodes. Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

- $\mathrm{L}=\mathrm{U}$ (optimality certificate)
- $\mathrm{L}=\infty$ (infeasibility certificate)
- L-U < threshold (early stopping)

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e. $\exists i \leq p \mid x_{i}^{\star} \notin \mathbb{Z}$

$$
x_{i} \leq\left\lfloor x_{i}^{\star}\right\rfloor \quad \vee \quad x_{i} \geq\left\lceil x_{i}^{\star}\right\rceil .
$$

Lower bound (L): minimal among leaf nodes. Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

- $\mathrm{L}=\mathrm{U}$ (optimality certificate)
- $\mathrm{L}=\infty$ (infeasibility certificate)
- L-U < threshold (early stopping)

Note: A time limit is used to ensure termination.

Branch-and-bound: a sequential process

Sequential decisions:

- variable selection (branching)
- node selection
- cutting plane selection
- primal heuristic selection
- simplex initialization

Branch-and-bound: a sequential process

Sequential decisions:

- variable selection
(branching)
- node selection
- cutting plane selection
- primal heuristic selection
- simplex initialization

Outline

Problem formulation
Discrete Optimization Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

Branching Policy

It is also called as variable selection policy.
Policy Objective: Given a B\&B node i.e. MILP, select a variable $i \leq p \mid x_{i}^{*} \notin \mathbb{Z}$ so that the final size of the tree is minimum (a proxy for running time).

A gold standard: Strong Branching (impractical)

Strong branching ${ }^{1}$: one-step forward looking (greedy)

- solve both LPs for each candidate variable
- select the variable resulting in tightest relaxation
+ small trees
- computationally expensive

[^0]
A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- Denote L_{i}^{+}as the value of LP relaxation of the MILP after adding $x_{i} \geq\left\lceil x_{i}^{*}\right\rceil$ constraint

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- Denote L_{i}^{+}as the value of LP relaxation of the MILP after adding $x_{i} \geq\left\lceil x_{i}^{*}\right\rceil$ constraint
- Similarly, denote L_{i}^{-}for the other half

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- Denote L_{i}^{+}as the value of LP relaxation of the MILP after adding $x_{i} \geq\left\lceil x_{i}^{*}\right\rceil$ constraint
- Similarly, denote L_{i}^{-}for the other half

Strong branching score

$$
\operatorname{score}_{S B, i}=\max \left(L-L_{i}^{+}, \epsilon\right) \times \max \left(L-L_{i}^{-}, \epsilon\right)
$$

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- Denote L_{i}^{+}as the value of LP relaxation of the MILP after adding $x_{i} \geq\left\lceil x_{i}^{*}\right\rceil$ constraint
- Similarly, denote L_{i}^{-}for the other half

Strong branching score

$$
\operatorname{score}_{S B, i}=\max \left(L-L_{i}^{+}, \epsilon\right) \times \max \left(L-L_{i}^{-}, \epsilon\right)
$$

Strong branching decision

$$
i_{S B}^{\star}=\underset{i}{\arg \max } \quad \text { score }_{S B, i}
$$

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch Lookback property

Our solution

Conclusion

Learning to branch

Objective:

Given a distribution of problem
sets, find a branching policy that yields a shortest tree on an average. Exploits statistical correlation across problem sets.

Figure: Application specific distribution

Learning to branch

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

Learning to branch

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

$$
i_{S B}^{\star}=\underset{i \in \mathcal{C}}{\arg \max } \operatorname{score}_{S B, i} \quad i_{f}^{\star}=\underset{i \in \mathcal{C}}{\arg \max } \operatorname{score}_{f_{\theta}, i},
$$

where $s_{f_{\theta}}^{i}$ is the score for $i \leq p$ variable as estimated by f_{θ}.

Learning to branch

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

$$
i_{S B}^{\star}=\underset{i \in \mathcal{C}}{\arg \max } \operatorname{score}_{S B, i} \quad i_{f}^{\star}=\underset{i \in \mathcal{C}}{\arg \max } \operatorname{score}_{f_{\theta}, i},
$$

where $s_{f_{\theta}}^{i}$ is the score for $i \leq p$ variable as estimated by f_{θ}.

$$
\theta^{*}=\underset{\theta}{\arg \min } \mathcal{L}\left(f_{\theta}(M I L P), i_{S B}^{\star}\right)
$$

Learning to branch

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

$$
i_{S B}^{\star}=\underset{i \in \mathcal{C}}{\arg \max } \operatorname{score}_{S B, i} \quad i_{f}^{\star}=\underset{i \in \mathcal{C}}{\arg \max } \operatorname{score}_{f_{\theta}, i},
$$

where $s_{f_{\theta}}^{i}$ is the score for $i \leq p$ variable as estimated by f_{θ}.

$$
\theta^{*}=\underset{\theta}{\arg \min } \mathcal{L}\left(f_{\theta}(M I L P), i_{S B}^{\star}\right)
$$

Well studied problem (not an exhaustive list)

- Gasse et al., $2019 \Longrightarrow$ offline imitation learning using GCNN
- Nair et al., $2020 \Longrightarrow$ uses GCNNs to design other heuristics
- Chen et al., $2022 \Longrightarrow$ studies the limitations of existing GNNs to represent MILPs

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the strong branching policy through classification framework

+ superior representation power
+ best overall accuracy

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the strong branching policy through classification framework

+ superior representation power
+ best overall accuracy

Model inputs

Inputs to the GNN is a bipartite-representation of MILP: G

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

$$
\begin{aligned}
& \arg \min \quad c^{\top} x \\
& x \\
& \text { subject to } A x \leq b \text {, } \\
& 1 \leq x \leq u \text {, } \\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
\end{aligned}
$$

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

$$
\begin{align*}
\underset{x}{\arg \min } & \mathrm{c}^{\top} \mathrm{x} \tag{0}\\
\text { bject to } & \mathrm{A} x
\end{align*}
$$

- x_{i} : variable features (type, coef., bounds, LP solution...)

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

$$
\begin{align*}
\underset{\mathrm{x}}{\arg \min } & \mathrm{c}^{\top} \mathrm{x} \tag{0}\\
\text { bject to } & \mathrm{A} \tag{0}\\
& \mathrm{I} \leq \mathrm{b}, \tag{1}\\
& \leq \mathrm{x} \tag{1}\\
& \leq \mathrm{u}, \tag{2}\\
& \mathrm{x}
\end{align*} \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
$$

- x_{i} : variable features (type, coef., bounds, LP solution...)
- g_{j} : constraint features (right-hand-side, LP slack...)

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph
$\arg \min$

$$
c^{\top} x
$$

x
subject to $A x \leq b$,

$$
\begin{aligned}
I \leq & x \leq u \\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
\end{aligned}
$$

- x_{i} : variable features (type, coef., bounds, LP solution...)
- g_{j} : constraint features (right-hand-side, LP slack...)
- $\mathrm{e}_{\mathrm{i}, j}$: non-zero coefficients in A

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the strong branching policy through classification framework

+ superior representation power
+ best overall accuracy

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the strong branching policy through classification framework

+ superior representation power
+ best overall accuracy
- requires GPUs for best running times (Gupta et al., 2020 addresses this drawback)

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the strong branching policy through classification framework

+ superior representation power
+ best overall accuracy
- requires GPUs for best running times (Gupta et al., 2020 addresses this drawback)
? Can we further improve the performance?

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

Lookback condition in strong branching

Strong branching heuristic exhibits the following condition: Parent's second best choice is often the child's best choice.

Frequency of Lookback condition

Frequency of Lookback condition

Instances	Description	number of parent-child pairs collected	number of parent-child pairs exhibiting the lookback property	Frequency of the lookback property
CORLAT	Corridor planning in wildlife management	5082	1765	34.73%
RCW	Red-cockaded woodpecker diffusion conservation	5115	1952	38.16%

Frequency of the lookback property in the real-world instances is as prevalent as in the synthetic instances considered in the main paper. These instances are made available by Dilkina et al., 2017.

Outline

Problem formulation

Our solution
Loss target
Regularizer

Evaluation

Conclusion

Outline

Problem formulation

Our solution
Loss target
Regularizer
Evaluation

Conclusion

Loss targets

We consider two types of targets
(\mathcal{Z} is the set of all the second best branching variables)

Original one-hot encoded target,

> y

$$
\mathrm{y}_{i}= \begin{cases}1, & i=i_{S B}^{*} \\ 0, & \text { otherwise }\end{cases}
$$

Loss targets

We consider two types of targets
(\mathcal{Z} is the set of all the second best branching variables)

Original one-hot encoded target,
y

$$
\mathrm{y}_{i}= \begin{cases}1, & i=i_{S B}^{*} \\ 0, & \text { otherwise }\end{cases}
$$

$$
\theta_{y}^{\star}=\underset{\theta}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), \mathrm{y}_{k}\right)
$$

Loss targets

We consider two types of targets
(\mathcal{Z} is the set of all the second best branching variables)

Original one-hot encoded target,
y

$$
\mathrm{y}_{i}= \begin{cases}1, & i=i_{S B}^{*} \\ 0, & \text { otherwise }\end{cases}
$$

Second-best ϵ-smoothed target, Z

$$
\mathrm{z}_{i}=\left\{\begin{array}{l}
1-\epsilon, \quad i=i_{S B}^{*} \\
\frac{\epsilon}{|\mathcal{Z}|}, \quad \quad i \in \mathcal{Z} \\
0, \quad \text { otherwise }
\end{array}\right.
$$

$$
\theta_{y}^{\star}=\underset{\theta}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), \mathrm{y}_{k}\right)
$$

Loss targets

We consider two types of targets
(\mathcal{Z} is the set of all the second best branching variables)

Original one-hot encoded target,
y

$$
\mathrm{y}_{i}= \begin{cases}1, & i=i_{S B}^{*} \\ 0, & \text { otherwise }\end{cases}
$$

Second-best ϵ-smoothed target, Z

$$
\mathrm{z}_{i}=\left\{\begin{array}{l}
1-\epsilon, \quad i=i_{S B}^{*} \\
\frac{\epsilon}{|\mathcal{Z}|}, \quad i \in \mathcal{Z} \\
0, \quad \text { otherwise }
\end{array}\right.
$$

$$
\theta_{y}^{\star}=\underset{\theta}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), y_{k}\right) \quad \theta_{z}^{\star}=\underset{\theta}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), \mathrm{z}_{k}\right)
$$

Outline

Problem formulation

Our solution
Loss target
Regularizer
Evaluation

Conclusion

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in GNNs

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in GNNs

$$
\operatorname{loss}_{P A T}=1\left\{\text { Lookback }_{i}\right\}
$$

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in GNNs

$$
\operatorname{loss}_{P A T}=1\left\{\text { Lookback }_{i}\right\} \cdot C E\left(f_{\theta}\left(\mathcal{G}_{i}\right), ? ?\right)
$$

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in GNNs

$$
\operatorname{loss}_{P A T}=1\left\{\text { Lookback }_{i}\right\} \cdot C E\left(f_{\theta}\left(\mathcal{G}_{i}\right), f_{\theta}\left(\mathcal{G}_{i}^{\text {parent }}\right)\left[\mathcal{C}_{i}\right]\right)
$$

Outline

Problem formulation

Our solution
Loss target
Regularizer

Evaluation

Conclusion

Performance evaluation

We will consider three different set of parameters

- Choice of the target:
- One-hot encoded, y
- Second-best ϵ-smoothed, z
- Strength of the PAT regularizer, $\lambda_{P A T} \in\{0,0.01,0.1,0.2,0.3\}$
- Strength of the $/ 2$-regularizer, $\lambda_{12} \in\{0.0,0.01,0.1,1.0\}$

Performance evaluation

$$
\theta_{y}=\underset{\theta, \lambda_{12}}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), y_{k}\right)+\lambda_{12} \cdot\|\theta\|_{2}
$$

Performance evaluation

$$
\begin{aligned}
& \theta_{y}=\underset{\theta, \lambda_{12}}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), \mathrm{y}_{k}\right)+\lambda_{12} \cdot\|\theta\|_{2} \\
& \theta_{z}=\underset{\theta, \lambda_{12}}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), \mathrm{z}_{k}\right)+\lambda_{12} \cdot\|\theta\|_{2}
\end{aligned}
$$

Performance evaluation

$$
\begin{gathered}
\theta_{y}=\underset{\theta, \lambda_{12}}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), \mathrm{y}_{k}\right)+\lambda_{12} \cdot\|\theta\|_{2} \\
\theta_{z}=\underset{\theta, \lambda_{12}}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), \mathrm{z}_{k}\right)+\lambda_{12} \cdot\|\theta\|_{2} \\
\theta_{P A T}=\underset{\theta, v, \lambda_{12}, \lambda_{P A T}}{\arg \min } \frac{1}{N} \sum_{k=1}^{N} C E\left(f_{\theta}\left(\mathcal{G}_{k}\right), \mathrm{v}\right)+\lambda_{12} \cdot\|\theta\|_{2}+\lambda_{P A T} \cdot \operatorname{loss}_{P A T}
\end{gathered}
$$

Performance evaluation: Instances

- Small instances are used to collect training data of parent-child nodes by solving these instances using the strong branching heuristic as the variable selection policy in the solver

Performance evaluation: Instances

- Small instances are used to collect training data of parent-child nodes by solving these instances using the strong branching heuristic as the variable selection policy in the solver
- Medium instances are used for hyperparameter selection incorporating harder-to-formulate criterion in the objective function

Performance evaluation: Instances

- Small instances are used to collect training data of parent-child nodes by solving these instances using the strong branching heuristic as the variable selection policy in the solver
- Medium instances are used for hyperparameter selection incorporating harder-to-formulate criterion in the objective function
- Big instances are used to report performance evaluation

Model selection criterion: Validation accuracy

Top-1 accuracy (1-standard deviation) on validation dataset.

Model selection criterion: Out-of-distribution performance

We solve 100 medium instances and collect the following metrics

- Wins: Number of times a model solved the instance fastest
- Time: 1-shifted geometric mean of time taken to solve each instance
- Nodes: 1-shifted geometric mean of nodes taken in the $B \& B$ tree of the commonly solved instances

Model selection criterion: Out-of-distribution performance

Model selection criterion: Out-of-distribution performance

We plot the range-normalized (range is specified in parenthesis) Time and Node performance of the selected models. The centered " X " black mark shows the final models that were selected to be used for evaluating the performance on Big instances. The points with a red outline show the performance of the models selected according to the best validation accuracy (Note that we omit such models for indset as it distorts the scale of the plot.)

Final performance

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB	n	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17979
TUNEDRPB	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	$\mathbf{4 7 7 . 2 6}$	$\mathbf{3 1 0 . 2 2}$	$\mathbf{6 9}$	$\mathbf{8 4}$	$\mathbf{1 6 ~ 3 8 8}$
Combinatorial Auction (Bigger)					

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Final performance

Model		Time	Time (c)	Wins	Solved
FSB*	n/a	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17979
TUNEDRPB	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	$\mathbf{4 7 7 . 2 6}$	$\mathbf{3 1 0 . 2 2}$	$\mathbf{6 9}$	$\mathbf{8 4}$	$\mathbf{1 6 ~ 3 8 8}$
Combinatorial Auction (Bigger)					

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Final performance

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB	n	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17979
TUNEDRPB	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	$\mathbf{4 7 7 . 2 6}$	$\mathbf{3 1 0 . 2 2}$	$\mathbf{6 9}$	$\mathbf{8 4}$	$\mathbf{1 6 ~ 3 8 8}$
Combinatorial Auction (Bigger)					

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Final performance

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB *	n/a	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17979
TUNEDRPB	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	$\mathbf{4 7 7 . 2 6}$	$\mathbf{3 1 0 . 2 2}$	$\mathbf{6 9}$	$\mathbf{8 4}$	$\mathbf{1 6 ~ 3 8 8}$
Combinatorial Auction (Bigger)					

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Final performance

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB	n	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17979
TUNEDRPB	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	$\mathbf{4 7 7 . 2 6}$	$\mathbf{3 1 0 . 2 2}$	$\mathbf{6 9}$	$\mathbf{8 4}$	$\mathbf{1 6 ~ 3 8 8}$
Combinatorial Auction (Bigger)					

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Final performance

Model	Time	Time (c)	Wins	Solved	Nodes (c)
FSB ${ }^{*}$	n/a	n/a	n/a	n/a	n/a
RPB	626.81	434.92	1	80	17979
TUNEDRPB	644.20	450.06	0	80	18104
GNN	507.06	333.59	14	80	17145
GNN-PAT (ours)	$\mathbf{4 7 7 . 2 6}$	$\mathbf{3 1 0 . 2 2}$	$\mathbf{6 9}$	$\mathbf{8 4}$	$\mathbf{1 6 3 8 8}$
Combinatorial Auction (Bigger)					

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

Optimality gap on commonly unsolved instances

Figure: Mean optimality gap of the commonly unsolved instances

Outline

Problem formulation

Our solution

Conclusion

Conclusion

- We discover lookback phenomenon in the gold-standard (by tree size) variable-selection heuristic

Conclusion

- We discover lookback phenomenon in the gold-standard (by tree size) variable-selection heuristic
- We proposed second-best ϵ-smoothed target and a PAT regularizer term to incorporate lookback phenomenon in deep learning models

Conclusion

- We discover lookback phenomenon in the gold-standard (by tree size) variable-selection heuristic
- We proposed second-best ϵ-smoothed target and a PAT regularizer term to incorporate lookback phenomenon in deep learning models
- We proposed a model selection scheme to incorporate final utility of these models in the objective function

Conclusion

- We discover lookback phenomenon in the gold-standard (by tree size) variable-selection heuristic
- We proposed second-best ϵ-smoothed target and a PAT regularizer term to incorporate lookback phenomenon in deep learning models
- We proposed a model selection scheme to incorporate final utility of these models in the objective function
- Our proposed models outperform the SOTA results

Open questions

- Discovery of more inductive biases

QR Codes generated via https://www.qr-code-generator.com/

Open questions

- Discovery of more inductive biases
- Designing better ways to incorporate lookback property

QR Codes generated via https://www.qr-code-generator.com/

Open questions

- Discovery of more inductive biases
- Designing better ways to incorporate lookback property
- Improve reinforcement learning solutions using the lookback property

QR Codes generated via https://www.qr-code-generator.com/

Open questions

- Discovery of more inductive biases
- Designing better ways to incorporate lookback property
- Improve reinforcement learning solutions using the lookback property

Paper: https://arxiv.org/abs/2006.15212

QR Codes generated via https://www.qr-code-generator.com/

Lookback for Learning to Branch

Thank you!

Prateek Gupta*, Elias B. Khalil, Didier Chételat, Maxime Gasse, M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

The
Alan Turing Institute

DATA SCIENCE
FOR REAL-TIME DECISION-MAKING

[^0]: ${ }^{1}$ D. Applegate et al. (1995). Finding cuts in the TSP. Tech. rep. DIMACS; J. Linderoth et al. (May 1999). A Computational Study of Search Strategies for Mixed Integer Programming.

