
Lookback for Learning to Branch

Prateek Gupta∗, Elias B. Khalil, Didier Chételat, Maxime Gasse,
M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

SIAM Conference on Optimization, June 2nd 2023

1/48

To improve the extent to which neural networks can imitate a
computationally expensive but accurate heuristic to solve

mixed-integer linear programming (MILP) problems.

2/48

Outline

Problem formulation

Our solution

Conclusion

3/48

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

4/48

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

5/48

Mixed-Integer Linear Program (MILP)

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

▶ c P Rn the objective coefficients

▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides
▶ l, u P Rn the lower and upper variable bounds
▶ p ≤ n integer variables

NP-hard problem.

6/48

Mixed-Integer Linear Program (MILP)

argmin
x

c⊤x

subject to Ax ≤ b,

l ≤ x ≤ u,
x P Zp × Rn−p.

▶ c P Rn the objective coefficients
▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides

▶ l, u P Rn the lower and upper variable bounds
▶ p ≤ n integer variables

NP-hard problem.

6/48

Mixed-Integer Linear Program (MILP)

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

▶ c P Rn the objective coefficients
▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides
▶ l, u P Rn the lower and upper variable bounds

▶ p ≤ n integer variables

NP-hard problem.

6/48

Mixed-Integer Linear Program (MILP)

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

▶ c P Rn the objective coefficients
▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides
▶ l, u P Rn the lower and upper variable bounds
▶ p ≤ n integer variables

NP-hard problem.

6/48

Mixed-Integer Linear Program (MILP)

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

▶ c P Rn the objective coefficients
▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides
▶ l, u P Rn the lower and upper variable bounds
▶ p ≤ n integer variables

NP-hard problem.

6/48

Applications

Combinatorial Auctions

Facility location-Allocation

Maximum Indendent Set

Set Covering

and many more ...

7/48

Mixed-Integer Linear Program (MILP)

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p .

▶ c P Rn the objective coefficients
▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides
▶ l, u P Rn the lower and upper variable bounds
▶ p ≤ n integer variables

NP-hard problem.

8/48

Mixed-Integer Linear Program (MILP)

Image credit: Maxime Gasse
9/48

Linear Program (LP)

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Rn .

▶ c P Rn the objective coefficients
▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides
▶ l, u P Rn the lower and upper variable bounds

◦ Polynomially solvable
◦ Yields lower bounds to the original MILP

10/48

Linear Program (LP)

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Rn .

▶ c P Rn the objective coefficients
▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides
▶ l, u P Rn the lower and upper variable bounds

◦ Polynomially solvable

◦ Yields lower bounds to the original MILP

10/48

Linear Program (LP)

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Rn .

▶ c P Rn the objective coefficients
▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides
▶ l, u P Rn the lower and upper variable bounds

◦ Polynomially solvable
◦ Yields lower bounds to the original MILP

10/48

LP Relaxation of a MILP

11/48

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

12/48

Branch-and-Bound (B&B)
B&B (Land et al., 1960) is the widely used framework to solve MILPs.
It consists of two steps

▶ Branching - Select variable to split the problem into two

▶ Bounding - Solve the LP relaxation of resulting problem to obtain
optimization guarantees on the solution

Image source: https://www.gurobi.com/resource/mip-basics/
13/48

Branch-and-Bound (B&B)
B&B (Land et al., 1960) is the widely used framework to solve MILPs.
It consists of two steps

▶ Branching - Select variable to split the problem into two

▶ Bounding - Solve the LP relaxation of resulting problem to obtain
optimization guarantees on the solution

Image source: https://www.gurobi.com/resource/mip-basics/
13/48

Branch-and-Bound (B&B)
B&B (Land et al., 1960) is the widely used framework to solve MILPs.
It consists of two steps

▶ Branching - Select variable to split the problem into two

▶ Bounding - Solve the LP relaxation of resulting problem to obtain
optimization guarantees on the solution

Image source: https://www.gurobi.com/resource/mip-basics/
13/48

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
∃i ≤ p | x⋆i ̸P Z

xi ≤ ⌊x⋆i ⌋ ∨ xi ≥ ⌈x⋆i ⌉.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

▶ L = U (optimality certificate)

▶ L = ∞ (infeasibility certificate)

▶ L - U < threshold (early stopping)

Note: A time limit is used to ensure termination.

14/48

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
∃i ≤ p | x⋆i ̸P Z

xi ≤ ⌊x⋆i ⌋ ∨ xi ≥ ⌈x⋆i ⌉.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

▶ L = U (optimality certificate)

▶ L = ∞ (infeasibility certificate)

▶ L - U < threshold (early stopping)

Note: A time limit is used to ensure termination.

14/48

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
∃i ≤ p | x⋆i ̸P Z

xi ≤ ⌊x⋆i ⌋ ∨ xi ≥ ⌈x⋆i ⌉.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

▶ L = U (optimality certificate)

▶ L = ∞ (infeasibility certificate)

▶ L - U < threshold (early stopping)

Note: A time limit is used to ensure termination.

14/48

Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
∃i ≤ p | x⋆i ̸P Z

xi ≤ ⌊x⋆i ⌋ ∨ xi ≥ ⌈x⋆i ⌉.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

▶ L = U (optimality certificate)

▶ L = ∞ (infeasibility certificate)

▶ L - U < threshold (early stopping)

Note: A time limit is used to ensure termination.

14/48

Branch-and-bound: a sequential process

Sequential decisions:
▶ variable selection

(branching)
▶ node selection
▶ cutting plane selection
▶ primal heuristic selection
▶ simplex initialization
▶ . . .

15/48

Branch-and-bound: a sequential process

Sequential decisions:
▶ variable selection

(branching)
▶ node selection
▶ cutting plane selection
▶ primal heuristic selection
▶ simplex initialization
▶ . . .

15/48

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

16/48

Branching Policy

It is also called as variable selection policy.

Policy Objective: Given a B&B node i.e. MILP, select a variable
i ≤ p | x∗i ̸P Z so that the final size of the tree is minimum (a proxy
for running time).

17/48

A gold standard: Strong Branching (impractical)

Strong branching1: one-step forward looking (greedy)
▶ solve both LPs for each candidate variable
▶ select the variable resulting in tightest relaxation
+ small trees
− computationally expensive

1D. Applegate et al. (1995). Finding cuts in the TSP. Tech. rep. DIMACS;
J. Linderoth et al. (May 1999). A Computational Study of Search Strategies
for Mixed Integer Programming.

18/48

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

▶ Let L be the value of LP relaxation of the MILP
▶ Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ ⌈x∗i ⌉ constraint
▶ Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ϵ)×max(L− L−i , ϵ)

Strong branching decision

i⋆SB = argmax
i

scoreSB,i

19/48

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

▶ Let L be the value of LP relaxation of the MILP

▶ Denote L+i as the value of LP relaxation of the MILP after
adding xi ≥ ⌈x∗i ⌉ constraint

▶ Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ϵ)×max(L− L−i , ϵ)

Strong branching decision

i⋆SB = argmax
i

scoreSB,i

19/48

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

▶ Let L be the value of LP relaxation of the MILP
▶ Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ ⌈x∗i ⌉ constraint

▶ Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ϵ)×max(L− L−i , ϵ)

Strong branching decision

i⋆SB = argmax
i

scoreSB,i

19/48

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

▶ Let L be the value of LP relaxation of the MILP
▶ Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ ⌈x∗i ⌉ constraint
▶ Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ϵ)×max(L− L−i , ϵ)

Strong branching decision

i⋆SB = argmax
i

scoreSB,i

19/48

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

▶ Let L be the value of LP relaxation of the MILP
▶ Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ ⌈x∗i ⌉ constraint
▶ Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ϵ)×max(L− L−i , ϵ)

Strong branching decision

i⋆SB = argmax
i

scoreSB,i

19/48

A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

▶ Let L be the value of LP relaxation of the MILP
▶ Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ ⌈x∗i ⌉ constraint
▶ Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ϵ)×max(L− L−i , ϵ)

Strong branching decision

i⋆SB = argmax
i

scoreSB,i

19/48

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

20/48

Learning to branch

Figure: Application specific distribution

Objective:
Given a distribution of problem
sets, find a branching policy that
yields a shortest tree on an average.
Exploits statistical
correlation across problem sets.

21/48

Learning to branch
Objective: Given a dataset of MILPs
▶ learn an inexpensive function f
▶ that imitates strong branching decisions (computationally

expensive)

i⋆SB = argmax
iPC

scoreSB,i i⋆f = argmax
iPC

scorefθ,i ,

where s ifθ is the score for i ≤ p variable as estimated by fθ.

θ∗ = argmin
θ

L(fθ(MILP), i⋆SB)

Well studied problem (not an exhaustive list)
▶ Gasse et al., 2019 =⇒ offline imitation learning using GCNN
▶ Nair et al., 2020 =⇒ uses GCNNs to design other heuristics
▶ Chen et al., 2022 =⇒ studies the limitations of existing

GNNs to represent MILPs

22/48

Learning to branch
Objective: Given a dataset of MILPs
▶ learn an inexpensive function f
▶ that imitates strong branching decisions (computationally

expensive)

i⋆SB = argmax
iPC

scoreSB,i i⋆f = argmax
iPC

scorefθ,i ,

where s ifθ is the score for i ≤ p variable as estimated by fθ.

θ∗ = argmin
θ

L(fθ(MILP), i⋆SB)

Well studied problem (not an exhaustive list)
▶ Gasse et al., 2019 =⇒ offline imitation learning using GCNN
▶ Nair et al., 2020 =⇒ uses GCNNs to design other heuristics
▶ Chen et al., 2022 =⇒ studies the limitations of existing

GNNs to represent MILPs

22/48

Learning to branch
Objective: Given a dataset of MILPs
▶ learn an inexpensive function f
▶ that imitates strong branching decisions (computationally

expensive)

i⋆SB = argmax
iPC

scoreSB,i i⋆f = argmax
iPC

scorefθ,i ,

where s ifθ is the score for i ≤ p variable as estimated by fθ.

θ∗ = argmin
θ

L(fθ(MILP), i⋆SB)

Well studied problem (not an exhaustive list)
▶ Gasse et al., 2019 =⇒ offline imitation learning using GCNN
▶ Nair et al., 2020 =⇒ uses GCNNs to design other heuristics
▶ Chen et al., 2022 =⇒ studies the limitations of existing

GNNs to represent MILPs

22/48

Learning to branch
Objective: Given a dataset of MILPs
▶ learn an inexpensive function f
▶ that imitates strong branching decisions (computationally

expensive)

i⋆SB = argmax
iPC

scoreSB,i i⋆f = argmax
iPC

scorefθ,i ,

where s ifθ is the score for i ≤ p variable as estimated by fθ.

θ∗ = argmin
θ

L(fθ(MILP), i⋆SB)

Well studied problem (not an exhaustive list)
▶ Gasse et al., 2019 =⇒ offline imitation learning using GCNN
▶ Nair et al., 2020 =⇒ uses GCNNs to design other heuristics
▶ Chen et al., 2022 =⇒ studies the limitations of existing

GNNs to represent MILPs
22/48

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework
+ superior representation power
+ best overall accuracy

Model inputs
Inputs to the GNN is a bipartite-representation of MILP: G

23/48

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework
+ superior representation power
+ best overall accuracy

Model inputs
Inputs to the GNN is a bipartite-representation of MILP: G

23/48

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

x0

x1

x2

g0

g1

e0,0

e2,0

e1,0

e2,1

▶ xi : variable features (type, coef., bounds, LP solution. . .)
▶ gj : constraint features (right-hand-side, LP slack. . .)
▶ ei ,j : non-zero coefficients in A

24/48

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

x0

x1

x2

g0

g1

e0,0

e2,0

e1,0

e2,1

▶ xi : variable features (type, coef., bounds, LP solution. . .)

▶ gj : constraint features (right-hand-side, LP slack. . .)
▶ ei ,j : non-zero coefficients in A

24/48

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

x0

x1

x2

g0

g1

e0,0

e2,0

e1,0

e2,1

▶ xi : variable features (type, coef., bounds, LP solution. . .)
▶ gj : constraint features (right-hand-side, LP slack. . .)

▶ ei ,j : non-zero coefficients in A

24/48

GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

x0

x1

x2

g0

g1

e0,0

e2,0

e1,0

e2,1

▶ xi : variable features (type, coef., bounds, LP solution. . .)
▶ gj : constraint features (right-hand-side, LP slack. . .)
▶ ei ,j : non-zero coefficients in A

24/48

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework
+ superior representation power
+ best overall accuracy

− requires GPUs for best running times (Gupta et al., 2020
addresses this drawback)

? Can we further improve the performance?

25/48

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework
+ superior representation power
+ best overall accuracy
− requires GPUs for best running times (Gupta et al., 2020

addresses this drawback)

? Can we further improve the performance?

25/48

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework
+ superior representation power
+ best overall accuracy
− requires GPUs for best running times (Gupta et al., 2020

addresses this drawback)
? Can we further improve the performance?

25/48

Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Lookback property

Our solution

Conclusion

26/48

Lookback condition in strong branching

Strong branching heuristic exhibits the following condition:
Parent’s second best choice is often the child’s best choice.

27/48

Frequency of Lookback condition

28/48

Frequency of Lookback condition

Frequency of the lookback property in the real-world instances is as prevalent as in the synthetic
instances considered in the main paper. These instances are made available by Dilkina et al., 2017.

29/48

Outline

Problem formulation

Our solution
Loss target
Regularizer
Evaluation

Conclusion

30/48

Outline

Problem formulation

Our solution
Loss target
Regularizer
Evaluation

Conclusion

31/48

Loss targets
We consider two types of targets
(Z is the set of all the second best branching variables)

Original one-hot encoded target,
y

yi =

{
1, i = i∗SB
0, otherwise

θ⋆y = argmin
θ

1
N

N∑
k=1

CE (fθ(Gk), yk)

Second-best ϵ-smoothed target,
z

zi =


1 − ϵ, i = i∗SB
ϵ

|Z| , i P Z
0, otherwise

θ⋆z = argmin
θ

1
N

N∑
k=1

CE (fθ(Gk), zk)

32/48

Loss targets
We consider two types of targets
(Z is the set of all the second best branching variables)

Original one-hot encoded target,
y

yi =

{
1, i = i∗SB
0, otherwise

θ⋆y = argmin
θ

1
N

N∑
k=1

CE (fθ(Gk), yk)

Second-best ϵ-smoothed target,
z

zi =


1 − ϵ, i = i∗SB
ϵ

|Z| , i P Z
0, otherwise

θ⋆z = argmin
θ

1
N

N∑
k=1

CE (fθ(Gk), zk)

32/48

Loss targets
We consider two types of targets
(Z is the set of all the second best branching variables)

Original one-hot encoded target,
y

yi =

{
1, i = i∗SB
0, otherwise

θ⋆y = argmin
θ

1
N

N∑
k=1

CE (fθ(Gk), yk)

Second-best ϵ-smoothed target,
z

zi =


1 − ϵ, i = i∗SB
ϵ

|Z| , i P Z
0, otherwise

θ⋆z = argmin
θ

1
N

N∑
k=1

CE (fθ(Gk), zk)

32/48

Loss targets
We consider two types of targets
(Z is the set of all the second best branching variables)

Original one-hot encoded target,
y

yi =

{
1, i = i∗SB
0, otherwise

θ⋆y = argmin
θ

1
N

N∑
k=1

CE (fθ(Gk), yk)

Second-best ϵ-smoothed target,
z

zi =


1 − ϵ, i = i∗SB
ϵ

|Z| , i P Z
0, otherwise

θ⋆z = argmin
θ

1
N

N∑
k=1

CE (fθ(Gk), zk)

32/48

Outline

Problem formulation

Our solution
Loss target
Regularizer
Evaluation

Conclusion

33/48

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in
GNNs

34/48

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in
GNNs

lossPAT = 1{Lookback i}·

34/48

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in
GNNs

lossPAT = 1{Lookback i} · CE (fθ(Gi), ??),

34/48

Parent-As-Target (PAT) regularizer

We consider a regularizer to encourage the lookback proprety in
GNNs

lossPAT = 1{Lookback i} · CE (fθ(Gi), fθ(Gparent
i)[Ci]),

34/48

Outline

Problem formulation

Our solution
Loss target
Regularizer
Evaluation

Conclusion

35/48

Performance evaluation

We will consider three different set of parameters

▶ Choice of the target:
▶ One-hot encoded, y
▶ Second-best ϵ-smoothed, z

▶ Strength of the PAT regularizer, λPAT P {0, 0.01, 0.1, 0.2, 0.3}
▶ Strength of the l2-regularizer, λl2 P {0.0, 0.01, 0.1, 1.0}

36/48

Performance evaluation

θy = argmin
θ,λl2

1
N

N∑
k=1

CE (fθ(Gk), yk) + λl2 · ||θ||2

θz = argmin
θ,λl2

1
N

N∑
k=1

CE (fθ(Gk), zk) + λl2 · ||θ||2

θPAT = argmin
θ,v,λl2,λPAT

1
N

N∑
k=1

CE (fθ(Gk), v) + λl2 · ||θ||2 + λPAT · lossPAT

37/48

Performance evaluation

θy = argmin
θ,λl2

1
N

N∑
k=1

CE (fθ(Gk), yk) + λl2 · ||θ||2

θz = argmin
θ,λl2

1
N

N∑
k=1

CE (fθ(Gk), zk) + λl2 · ||θ||2

θPAT = argmin
θ,v,λl2,λPAT

1
N

N∑
k=1

CE (fθ(Gk), v) + λl2 · ||θ||2 + λPAT · lossPAT

37/48

Performance evaluation

θy = argmin
θ,λl2

1
N

N∑
k=1

CE (fθ(Gk), yk) + λl2 · ||θ||2

θz = argmin
θ,λl2

1
N

N∑
k=1

CE (fθ(Gk), zk) + λl2 · ||θ||2

θPAT = argmin
θ,v,λl2,λPAT

1
N

N∑
k=1

CE (fθ(Gk), v) + λl2 · ||θ||2 + λPAT · lossPAT

37/48

Performance evaluation: Instances

▶ Small instances are used to collect training data of
parent-child nodes by solving these instances using the strong
branching heuristic as the variable selection policy in the solver

▶ Medium instances are used for hyperparameter selection
incorporating harder-to-formulate criterion in the objective
function

▶ Big instances are used to report performance evaluation

38/48

Performance evaluation: Instances

▶ Small instances are used to collect training data of
parent-child nodes by solving these instances using the strong
branching heuristic as the variable selection policy in the solver

▶ Medium instances are used for hyperparameter selection
incorporating harder-to-formulate criterion in the objective
function

▶ Big instances are used to report performance evaluation

38/48

Performance evaluation: Instances

▶ Small instances are used to collect training data of
parent-child nodes by solving these instances using the strong
branching heuristic as the variable selection policy in the solver

▶ Medium instances are used for hyperparameter selection
incorporating harder-to-formulate criterion in the objective
function

▶ Big instances are used to report performance evaluation

38/48

Model selection criterion: Validation accuracy

Top-1 accuracy (1-standard deviation) on validation dataset.

39/48

Model selection criterion: Out-of-distribution performance

We solve 100 medium instances and collect the following metrics
▶ Wins: Number of times a model solved the instance fastest
▶ Time: 1-shifted geometric mean of time taken to solve each

instance
▶ Nodes: 1-shifted geometric mean of nodes taken in the B&B

tree of the commonly solved instances

40/48

Model selection criterion: Out-of-distribution performance

41/48

Model selection criterion: Out-of-distribution performance

We plot the range-normalized (range is specified in parenthesis) Time and Node performance of the
selected models. The centered “X” black mark shows the final models that were selected to be used for
evaluating the performance on Big instances. The points with a red outline show the performance of the
models selected according to the best validation accuracy (Note that we omit such models for indset as
it distorts the scale of the plot.)

42/48

Final performance

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

43/48

Final performance

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

43/48

Final performance

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

43/48

Final performance

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

43/48

Final performance

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

43/48

Final performance

Figure: Evaluation metrics on Big instances with a time budget of 30 minutes per instance

43/48

Optimality gap on commonly unsolved instances

Figure: Mean optimality gap of the commonly unsolved instances

44/48

Outline

Problem formulation

Our solution

Conclusion

45/48

Conclusion

▶ We discover lookback phenomenon in the gold-standard (by
tree size) variable-selection heuristic

▶ We proposed second-best ϵ-smoothed target and a PAT
regularizer term to incorporate lookback phenomenon in deep
learning models

▶ We proposed a model selection scheme to incorporate final
utility of these models in the objective function

▶ Our proposed models outperform the SOTA results

46/48

Conclusion

▶ We discover lookback phenomenon in the gold-standard (by
tree size) variable-selection heuristic

▶ We proposed second-best ϵ-smoothed target and a PAT
regularizer term to incorporate lookback phenomenon in deep
learning models

▶ We proposed a model selection scheme to incorporate final
utility of these models in the objective function

▶ Our proposed models outperform the SOTA results

46/48

Conclusion

▶ We discover lookback phenomenon in the gold-standard (by
tree size) variable-selection heuristic

▶ We proposed second-best ϵ-smoothed target and a PAT
regularizer term to incorporate lookback phenomenon in deep
learning models

▶ We proposed a model selection scheme to incorporate final
utility of these models in the objective function

▶ Our proposed models outperform the SOTA results

46/48

Conclusion

▶ We discover lookback phenomenon in the gold-standard (by
tree size) variable-selection heuristic

▶ We proposed second-best ϵ-smoothed target and a PAT
regularizer term to incorporate lookback phenomenon in deep
learning models

▶ We proposed a model selection scheme to incorporate final
utility of these models in the objective function

▶ Our proposed models outperform the SOTA results

46/48

Open questions

▶ Discovery of more inductive biases

▶ Designing better ways to incorporate lookback property
▶ Improve reinforcement learning solutions using the lookback

property

Paper: https://arxiv.org/abs/2006.15212

QR Codes generated via https://www.qr-code-generator.com/
47/48

https://arxiv.org/abs/2006.15212
https://www.qr-code-generator.com/

Open questions

▶ Discovery of more inductive biases
▶ Designing better ways to incorporate lookback property

▶ Improve reinforcement learning solutions using the lookback
property

Paper: https://arxiv.org/abs/2006.15212

QR Codes generated via https://www.qr-code-generator.com/
47/48

https://arxiv.org/abs/2006.15212
https://www.qr-code-generator.com/

Open questions

▶ Discovery of more inductive biases
▶ Designing better ways to incorporate lookback property
▶ Improve reinforcement learning solutions using the lookback

property

Paper: https://arxiv.org/abs/2006.15212

QR Codes generated via https://www.qr-code-generator.com/
47/48

https://arxiv.org/abs/2006.15212
https://www.qr-code-generator.com/

Open questions

▶ Discovery of more inductive biases
▶ Designing better ways to incorporate lookback property
▶ Improve reinforcement learning solutions using the lookback

property

Paper: https://arxiv.org/abs/2006.15212

QR Codes generated via https://www.qr-code-generator.com/
47/48

https://arxiv.org/abs/2006.15212
https://www.qr-code-generator.com/

Lookback for Learning to Branch

Thank you!

Prateek Gupta∗, Elias B. Khalil, Didier Chételat, Maxime Gasse,
M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

48/48

	Problem formulation
	Discrete Optimization
	Branch-and-Bound
	The Branching Problem
	Learning to branch
	Lookback property

	Our solution
	Loss target
	Regularizer
	Evaluation

	Conclusion
	

